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Stability of knots in excitable media
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Through extensive numerical simulations we investigate the evolution of knotted and linked vortices in the
FitzHugh-Nagumo model. On medium time scales, of the order of a hundred times the vortex rotation period,
knots simultaneously translate and precess with very little change of shape. However, on long time scales, we
find that knots evolve in a more complicated manner, with particular arcs expanding and contracting, producing
substantial variations in the total length. The topology of a knot is preserved during the evolution, and after
several thousand vortex rotation periods the knot appears to approach an asymptotic state. Furthermore, this
asymptotic state is dependent upon the initial conditions and suggests that, even within a given topology, a host
of metastable configurations exists, rather than a unique stable solution. We discuss a possible mechanism for
the observed evolution, associated with the impact of higher-frequency wavefronts emanating from parts of the
knot which are more twisted than the expanding arcs.
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There are a wide variety of naturally occurring excitab
media which possess spiral wave vortices. Examples inc
chemical concentrations in the Belousov-Zhabotinsky re
tion @1# and electrical depolarization waves in cardiac tiss
@2#. The vortices in this last example are of particular sign
cance, since they are believed to play a vital role in ventri
lar fibrillation and hence sudden cardiac death@3#. Both
these systems, and many others, have a common mathe
cal description in terms of nonlinear partial differential equ
tions of reaction-diffusion type. In the case of cardiac tiss
the simplest continuous mathematical model is the FitzHu
Nagumo equation, and it is the investigation of dynami
three-dimensional solutions of this equation, which is
topic of this paper.

More than 20 years ago, it was conjectured that stable
at least persistent, three-dimensional solutions~termed ‘‘ or-
ganizing centres’’! might exist in excitable media in which
two-dimensional vortices are embedded into thr
dimensional space in such a way that they form knotted~or
linked! vortex strings. The anatomy of these objects w
clarified in terms of the topology of isoconcentration su
faces bordered by vortex strings@4#. The hope was that the
nontrivial topology of a configuration, perhaps aided by
short-range repulsive force between vortex cores, or by
effect of phase twist along the vortex string, might provide
barrier to its decay@5#. However, others@6# argued agains
this optimism with the view that curvature, tension, and
connection processes would ultimately lead to the colla
and extinction of all knots. A framework was proposed@7,8#
for thinking about vortex string dynamics in the limiting ca
of slight curvature and twist, but attempts to verify it we
successful only in the strict limit of no twist@9,10#. Ulti-
mately, to address the fundamental issue of the existenc
stable knots, one must turn to numerical methods. Abou
decade ago, a number of preliminary numerical investi
tions were performed@9,10#, which suggested that certai
knotted ~and linked! configurations were stable, having
soliton-like behavior in which the knot moved through t
medium as a rotating rigid body with a constant shape. Ho
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ever, due to computational constraints, such simulations w
limited to time scales which never exceeded about one h
dred vortex rotation periods~often substantially less! and
used very symmetric initial conditions.

In this paper, we present the results of extensive num
cal simulations of a duration well beyond a thousand tim
the vortex period, and using perturbed asymmetric ini
conditions. We investigate several knots and links, and c
clude that all appear to be metastable in the sense that s
perturbations produce dramatic changes in the evolution o
time scales of the order of thousands of vortex rotation p
ods. The evolution is quite exotic, and very far from t
simple curvature and tension-induced collapse sugge
previously. In all cases, the topology of the knot~or link! is
preserved during the evolution, as we observe no recon
tion events. Rather than a simple uniform contraction of
knot, which might be expected as a result of tension, we fi
that a particular arc of the knot both expands and contra
After substantial variations in its total length, the knot eve
tually approaches a steady state. However, this state doe
appear to be unique and suggests that, even within a g
topology, a host of metastable configurations exists. We
cuss a possible mechanism for the observed evolution, a
ciated with the impact of higher-frequency wavefronts em
nating from parts of the knot which are more twisted than
expanding arcs.

The FitzHugh-Nagumo equations are given by

]u

]t
5

~u2u3/32v !

e
1¹2u,

]v
]t

5e~u1b2gv !, ~1!

whereu(t,x) andv(t,x) are both real fields withu the elec-
tric potential andv the recovery variable associated wi
membrane channel conductivity. We take the constants
pearing in Eq.~1! to have the valuese50.3,b50.7, andg
50.5. This choice of constants is nongeneric and is m
vated by our aim of trying to find stable knots. This set
values has a number of special properties which might
conducive to knot stability, such as the lack of meander o
©2003 The American Physical Society18-1
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FIG. 1. The core of the trefoil knot at time
t5500, 5000, 10 000, and 40 000.
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two-dimensional vortex and the stability of an untwisted v
tex ring in three dimensions. See Ref.@11# for a description
of the properties of a two-dimensional vortex as a function
the parameterse,b,g.

In two-space dimensions, the FitzHugh-Nagumo eq
tions with these parameter values have plane wave solut
which travel at a speedc51.9 and rotating vortex solution
~often called spiral waves! with a periodT0511.2. The vor-
tex solution hasu andv wavefronts in the form of an invo
lute spiral with a wavelengthl05cT0521.3. Geometrically,
this means that all lines which are perpendicular to the le
curves of the fieldu, are tangent to a small circle of diamet
l0 /p. This circle represents the vortex core and is the reg
in space in which the gradients of theu and v fields differ
substantially from being parallel. For later use, it is conv
nient to define the quantity

F5u“u3“vu, ~2!

which is highly localized at the vortex core.
We solve Eqs.~1! in three-space dimensions using an e

plicit finite difference scheme, which is accurate to seco
order in the spatial derivatives and to first order in the ti
derivative. Although this scheme appears very simplistic
appears that the nature of these equations is such that
sophisticated or higher-order algorithms do not lead to s
stantial gains in efficiency or accuracy, although this can
achieved if one is willing to modify the FitzHugh-Nagum
equations to a form designed specifically for the applicabi
of a more efficient numerical approach@12#. For our simula-
tions, we use a grid containing 2013 points and a lattice
spacingdx50.5, so that our spatial coordinates are confin
to the range250<xi<50. The time step used isdt50.02.
In the x1 and x2 directions, we apply Neumann bounda
conditions and in thex3 direction, the boundary condition
are periodic. The selection of thex3 direction as periodic is
01621
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because we shall orient our knots so that they initially tra
late as rigid bodies moving in thex3 direction, and we do not
wish to impede their motion.

We create initial conditions which form knotted vorte
strings by making use of complex curves as described in R
@13# and is similar to the approach used in Ref.@14# for the
study of knotted topological solitons. Recall that a knot m
be written as the intersection of a complex curveC with the
unit 3-sphereS3. Here,S3 should be thought of as a com
pactified three-dimensional Euclidean space, with the
plicit coordinates given by stereographic projection,

Z05
2~x11 ix2!

11r 2
, Z15

r 22112ix3

11r 2
, ~3!

wherer is the Euclidean distance from the origin, andZ0 and
Z1 are two complex coordinates satisfyinguZ0u21uZ1u251
and hence parametrizeS3. With this identification, the knot
is the one-dimensional locus in space of the complex curvC
with coordinatesZ0 andZ1. As an example, to represent th
(m:n) torus knot, we takeC5Z1

m2Z0
n , where for later con-

venience we have identifiedC with its zero set. IfC hasp
factors, then it describes an object withp components and
hence this formalism can also be used to describe disc
nected knots as well as links.

For a given knot~or link!, we create initial conditions for
the fieldsu and v from the associated curveC through the
prescription

u5L1Re~C!1u* , v5L2Im~C!1v* . ~4!

Here, L1 and L2 are two real constants~taken to beL1
52,L251) which are used to scale the initial conditions
that they cover the range of the excitation-recovery loop
(u,v) space associated with the ordinary differential eq
8-2
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tion part of Eq.~1!. The constantsu* 5v* 520.4 are the
values which can be roughly attributed to the vortex core

The simplest nontrivial knot is the trefoil knot, given b
the curveC5Z1

22Z0
3. We use this in the above prescriptio

to obtain our initial conditions. In Fig. 1, we plot the isosu
faceF50.01, which indicates the core of the vortex strin
at the timest5500, 5000, 10 000, and 40 000. Note that
time t50 this isosurface vanishes, since the initial conditio
do not produce the vortex string itself but only seed the fi
configuration which will form into a vortex string after
time scale of the order of ten vortex periods. In Fig. 1~a!, the
symmetric trefoil knot has clearly formed. In fact, the kn
forms at a much earlier time, but it is slightly larger an
quickly shrinks to this size. The knot moves in thex3 direc-
tion ~towards the back left-hand side of the box in the fi
ure!, with little change of shape, and at a speed of appro
mately c/80, wherec denotes the wavefront speed give
earlier. The knot also rotates around thex3 axis with a period
of around 160T0, whereT0 is the vortex period given above

FIG. 2. The length of the trefoil knot as a function of time.
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Figure 1~b! reveals that the knot has drifted slightly awa
from thex3 axis and one of the three lobes has expanded
comparison to the other two. Although the initial configur
tion has a cyclicC3 symmetry, the cubic grid, and mor
importantly its boundary, breaks this symmetry and allo
an asymmetric instability to develop. The larger lobe cont
ues to expand, Fig. 1~c!, and now the knot no longer simpl
translates in thex3 direction, but rotates and follows a com
plicated path in space. Though still preserving the topolo
of a trefoil, the knot is now better viewed as a large expa
ing ring with a small knot tied in it. Eventually, the expan
sion of the arc stops and a contraction begins. By Fig. 1~d!
the knot has regained its more symmetric form and ha
similar length as before the expansion, but now it appear
be an asymptotic state. This can be seen by computing
length as a function of time, which is displayed in Fig. 2.

To understand a possible mechanism responsible for
expansion of one arc of the knot and the subsequent con
tion to a steady state, we need to recall two facts. Fi
analytical and numerical work shows that a straight and u
formly twisted vortex line has a period which is slightly le
than that of the two-dimensional vortex, or equivalently t
untwisted vortex line@15,16#. Here, twist refers to the varia
tion of the phase in the complex (u,v) plane as one move
along the vortex string. Second, it is known that for a syst
of two vortices in which the vortices have different perio
~for example, as arises in a model with spatially varyi
parameters!, the collision interface, which is the point a
which the spiral wavefronts from the two vortices meet a
annihilate, gradually moves towards the vortex with t
larger period. In the absence of dispersion, the collision
terface moves at a speedĉ5cuT12T2u/(T11T2) whereT1
and T2 are the periods of the two vortices. Eventually, t
collision interface reaches the core of the larger period v
s
FIG. 3. The core of the perturbed linked ring
at timest5200, 6200, 10 200, and 15 200.
8-3
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tex and it gets slapped away by the higher-frequency wa
fronts emanating from the shorter period vortex@17,18#.
Combining these two facts, we see that a reasonable ex
nation for the expanding arc is that the more knotted part
a greater local twist rate than at least some part of the la
expanding ring, so its period is slightly less and this resu
in its higher-frequency wavefronts slapping away the r
and producing its expansion. This slapping mechanism
discussed in Ref.@19# in the context of stabilizing a kno
against contraction. To check this hypothesis, we have ex
ined the collision interface by taking a slice through the co
figuration in which the expanding arc and most parts of
knot pass almost perpendicularly through the selected pl
This reveals that the wavefront produced by the tightly kn
ted cores impacts almost on top of the core of the expand
arc, in agreement with our hypothesis for slapping induc
expansion. The details will be presented elsewhere@20#.

The simplest example, in which the above issues reg
ing stability can be investigated, is to study two rings link
once. Consider the complex curveC5Z1

22Z0
22mZ0, where

m is a real parameter. Ifm50, then this curve is associate
with two identical rings in which each contain one full twi
and are linked once. This configuration has aC2 symmetry
corresponding to a rotation by 180° around thex3 axis. The
link formed from this initial condition moves along thex3
axis as a rotating rigid structure and shows no sign of in
bility even up tot520 000. The reason this example diffe
from the trefoil knot in this respect is that aC2 symmetry is
clearly more compatible with the cubic lattice~and bound-
ary! of the numerical grid than theC3 symmetry of the tre-
foil knot. For this example, we therefore require an expli
perturbation to test the stability of this link. This is achiev
by settingm to be nonzero in the above curve, which disto
one of the rings, making it larger than the other and he

FIG. 4. The length of the small ring~bottom curve! and the large
ring ~top curve! as a function of time for the perturbed linked ring
L.
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breaking theC2 symmetry. The results of a numerical ev
lution with m50.5 are displayed in Fig. 3, where we plot th
vortex cores (F50.01 isosurface! at times t5200, 6200,
10 200, and 15 200. The larger of the two rings initially co
tracts, but this is followed by an expansion which yields
asymptotic state in which the larger ring has a length sim
to that in the perturbed initial condition. In Fig. 4, we plot th
lengths of the small ring~bottom curve! and the large ring
~top curve! as a function of time. From this figure, it can b
seen that the length of the small ring remains almost cons
and an asymptotic state has been reached which is cert
very different from the unperturbed solution (m50) in
which both rings have an equal length. By examination
the collision interface, we again verify that the wavefron
from the small ring impact on the vortex core of the lar
ring. Moreover, an examination of the twist along each of
rings reveals that the small ring has a roughly constant p
tive twist along its length, but the large ring has a substan
variation in its twist rate, containing regions ofnegativetwist
even though the total twist along its length sums to one
turn in the positive direction. The fact that such a high
nontrivial distribution of twist occurs in an apparent
asymptotic state is further evidence that a variety of me
stable configurations exist in which the relative spatial d
tribution of the strings is in equilibrium under the action
several complicated forces in which the rate of twisting pla
a vital role. To summarize, we have found a novel dynami
behavior of knotted vortex strings in the FitzHugh-Nagum
model with parameter values chosen to minimize any k
instabilities. It would be interesting to determine if our r
sults are generic for the FitzHugh-Nagumo model with oth
parameter values and also for other excitable media. In f
there is already some evidence for this in the initial exp
sion of a trefoil knot in a medium with equal diffusion o
both reactants@21#, but this example was regarded as
unexplained peculiarity at the time and simulations could
be performed for the length of time required to observe
full expansion and approach to an asymptotic state that
have described in this paper. It would certainly be wor
while performing extensive numerical investigations, ov
very long time scales, on a variety of equations model
different excitable media.

The construction of knotted vortex strings in laborato
experiments on excitable media would be of significant
terest, though it is unlikely that the full evolution describe
in this paper could be studied in this setting since the typ
lifetime of vortices in current experiments is limited to le
than a hundred vortex periods.

Finally, the interaction and scattering of two initially wel
separated knots are also worthy of investigation.
d
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